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Abstract

The precision determination of scalar top quark properties will play an important

rôle at a future International Linear Collider (ILC). Recent and ongoing studies

are discussed for different experimental topologies in the detector. First results

are presented for small mass differences between the scalar top and neutralino

masses. This corresponds to a small expected visible energy in the detector. An

ILC will be a unique accelerator to explore this scenario. In addition to finding

the existence of light stop quarks, the precise measurement of their properties is

crucial for testing their impact on the dark matter relic abundance and the mecha-

nism of electroweak baryogenesis. Significant sensitivity for mass differences down

to 5 GeV are obtained. The simulation is based on a fast and realistic detector

simulation. A vertex detector concept of the Linear Collider Flavor Identification

(LCFI) collaboration, which studies pixel detectors for heavy quark flavour identi-

fication, is implemented in the simulations for c-quark tagging. The study extends

simulations for large mass differences (large visible energy) for which aspects of

different detector simulations, the vertex detector design, and different methods

for the determination of the scalar top mass are discussed. Based on the detailed

simulations we study the uncertainties for the dark matter density predictions and

their estimated uncertainties from various sources. In the region of parameters

where stop-neutralino co-annihilation leads to a value of the relic density consis-

tent with experimental results, as precisely determined by the Wilkinson Microwave

Anisotropy Probe (WMAP), the stop-neutralino mass difference is small and the

ILC will be able to explore this region efficiently.
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The precision determination of scalar top quark properties will play an important rôle at a future International Linear

Collider (ILC). Recent and ongoing studies are discussed for different experimental topologies in the detector. First

results are presented for small mass differences between the scalar top and neutralino masses. This corresponds

to a small expected visible energy in the detector. An ILC will be a unique accelerator to explore this scenario.

In addition to finding the existence of light stop quarks, the precise measurement of their properties is crucial for

testing their impact on the dark matter relic abundance and the mechanism of electroweak baryogenesis. Significant

sensitivity for mass differences down to 5 GeV are obtained. The simulation is based on a fast and realistic detector

simulation. A vertex detector concept of the Linear Collider Flavor Identification (LCFI) collaboration, which studies

pixel detectors for heavy quark flavour identification, is implemented in the simulations for c-quark tagging. The study

extends simulations for large mass differences (large visible energy) for which aspects of different detector simulations,

the vertex detector design, and different methods for the determination of the scalar top mass are discussed. Based

on the detailed simulations we study the uncertainties for the dark matter density predictions and their estimated

uncertainties from various sources. In the region of parameters where stop-neutralino co-annihilation leads to a value of

the relic density consistent with experimental results, as precisely determined by the Wilkinson Microwave Anisotropy

Probe (WMAP), the stop-neutralino mass difference is small and the ILC will be able to explore this region efficiently.

1. INTRODUCTION

The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex

detector as only two c-quarks and missing energy (from undetected neutralinos) are produced for light stops. The

reaction e+e− → t̃1
¯̃t1 → cχ̃

0
1c̄χ̃

0
1 is shown in Fig. 1.

The study of small mass differences between stop and neutralino is strongly motivated cosmologically. A long

history of experimental observations has corroborated the evidence for dark matter in the universe, culminating

in the recent accurate determination by the WMAP satellite, in combination with the Sloan Digital Sky Survey

(SDSS) [1], ΩCDMh2 = 0.1126+0.0161
−0.0181 at the 95% C.L. Here ΩCDM is the dark matter energy density normalized

to the critical density and h is the Hubble parameter in units of 100 km/s/Mpc. Supersymmetry with R-parity

conservation provides a natural dark matter candidate, which in most scenarios is the lightest neutralino.

Electroweak baryogenesis is based on the concept that the baryon asymmetry is generated at the electroweak phase

transition. While in the Standard Model the phase transition is not sufficiently strongly first order and there is not

enough CP violation, Supersymmetry can alleviate both shortcomings. A strong first-order phase transition can be

induced by loop effects of light scalar top quarks (stops) to the Higgs potential. In much of the parameter space of

interest for electroweak baryogenesis, the light stop is only slightly heavier than the lightest neutralino, thus implying

that stop-neutralino co-annihilation is significant. In the co-annihilation region, the stop-neutralino mass difference

is typically smaller than 30 GeV [2], making a discovery of the stops at hadron colliders difficult.

The LCFI Collaboration develops a CCD vertex detector for a future Linear Collider. This vertex detector concept

is implemented in the c-quark tagging simulations. The detector consists of 5 CCD layers at 15, 26, 37, 48 and 60 mm.

Figure 1 outlines the detector geometry.

Various visible energies in the detector are possible as determined by the mass difference between scalar top and

neutralino. A small mass difference ∆m corresponds to a small visible energy. Smaller mass differences are a larger

challenge for the vertex detector as fewer and less energetic tracks are available to determine the quark flavor.

∗Presented at the 13th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY’05), Durham,
UK, July 18-23, 2005.
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Figure 1: Left: scalar top production and decay. Right: illustration of the vertex detector with 5 CCD layers.

The work is presented as follows. First, detector simulations with SGV [3] and Simdet [4] are compared for

mt̃1
= 180 GeV and mχ̃

0

1

= 100 GeV. Then, also for large visible energy, the SPS-5 benchmark parameter point

(mt̃1
= 220.7 GeV, mχ̃

0

1

= 120.0 GeV) has been studied. Different detector design variations are discussed, and four

methods to determine the scalar top mass are compared. The experimental simulations of signal and background for

small visible energy are presented and the scalar top mass and mixing parameter are determined for a scenario of

the co-annihilation mechanism for Supersymmetric dark matter. Systematic and statistical uncertainties at a Linear

Collider are discussed for a dark matter prediction. The expectation from different SUSY parameter combinations

are compared with the current Cold Dark Matter (CDM) measurement.

2. SGV AND SIMDET COMPARISON FOR LARGE VISIBLE ENERGY

Signal and background events have been generated for
√

s = 500 GeV and passed through the Simdet 4.03 detector

simulation. First, the 1000 fb−1 simulation is compared to a previous SGV simulation in regard to signal efficiency

and numbers of expected background events for mt̃1
= 180 GeV and mχ̃

0

1

= 120 GeV [5]:
Channel Simdet generated events Simdet preselection/500 fb−1 previous SGV preselection/500 fb−1

cχ̃
0
1c̄χ̃

0
1 50 k 48% 47%

qq̄ 12169 k 64963 46788

t̄t 620 k 32715 43759

eeZ 5740 k 24864 4069

ZZ 560 k 3100 4027

Weν 4859 k 252367 252189

WW 6800 k 122621 115243

Total background 500631 466075

The eeZ process has a lower expected rate in SGV, because of a different detector coverage in the forward-backward

region. After additional cuts, Evis/
√

s < 0.52 and Pt/Evis > 0.05, the following numbers of events are obtained:

Channel qq̄ WW Weν t̄t ZZ eeZ total

Background 6801 23278 226070 5267 125 2147 263691

The total number of background events agrees well with the previous 278377 events for the SGV simulation [6].

The signal to background ratio is optimized [6] by the IDA method [7]. First, by allowing a reduction of the signal

of 50% most background events are removed. Without c-quark tagging 7815 (cf. SGV 7265) background events

remain, while with c-quark tagging this number is reduced to 3600 events. Second, the IDA method is repeated.

Figure 2 shows the background composition after IDA step 2 without c-quark tagging and the tagging performance

after IDA step 1. For a 180 GeV signal and 12% detection efficiency, 680 (cf. SGV 400) background events remain

without c-quark tagging, while with c-quark tagging 165 background events are expected.
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Figure 2: Left: IDA-2 output. Right: efficiency vs. purity of c-quark tagging after IDA step 1. Purity is defined as the ratio

of the number of simulated signal events after the selection to all selected events.

3. SPS-5 (LARGE VISIBLE ENERGY): VERTEX DETECTOR DESIGN VAR IATIONS

The development of a vertex detector for a Linear Collider is large challenge. A key aspect is the distance of the

innermost layer to the interaction point, which is related to radiation hardness and beam background. Another key

aspect is the material absorption length which determines the multiple scattering. The optimization of the vertex

detector tagging performance is a further aspect. While at previous and current accelerators (e.g. SLC, LEP, Teva-

tron) b-quark tagging has revolutionized many searches and measurements, c-quark tagging will be very important

at a future Linear Collider. Therefore, c-quark tagging could be a benchmark for vertex detector developments.

The analysis for a large mass difference with the SPS-5 parameter point (ISAJET) mt̃1
= 220.7 GeV, mχ̃

0

1

= 120.0

GeV and cos θt̃ = 0.5377 was previously performed [5]. For 25% (12%) efficiency 3800 (1800) signal events and 5400

(170) background events without c-quark tagging were obtained, while the background is reduced to 2300 (68) events

with c-quark tagging.

The vertex detector absorption length is varied between normal thickness (TESLA TDR) and double thickness. In

addition, the number of vertex detector layers is varied between 5 layers (innermost layer at 1.5 cm as in the TESLA

TDR) and 4 layers (innermost layer at 2.6 cm). For SPS-5 parameters the following number of background events

remain:

Thickness layers 12% signal efficiency 25% signal efficiency

Single 5 (4) 68 (82) 2300 (2681)

Double 5 (4) 69 (92) 2332 (2765)

As a result, a significantly larger number of background events is expected if the first layer of the vertex detector

is removed. The distance of the first layer to the interaction point is also an important aspect from the accelerator

physics (beam delivery) perspective. The interplay between the beam delivery and vertex detector design in regard

to critical tolerances like hardware damage of the first layer and occupancy (unable to use the data of the first layer)

due to beam background goes beyond the scope of this study and will be addressed in the future.

No significant increase in the expected background is observed by doubling the thickness of the vertex detector

layers. It is interesting to study this behavior for events with smaller visible energy in the detector, where a larger

effect of the multiple scattering is expected. This study, based on the analysis in sec. 5, is in preparation [8].

4. SPS-5 (LARGE VISIBLE ENERGY): COMPARISION OF MASS DETERM INATIONS

The precision in the scalar top mass determination at a Linear Collider is crucial and four methods are compared

for the SPS-5 parameter point [9]. Two of the methods rely on accurate cross section measurements, the other two

use kinematic information from the observed jets. The signal events contain two charm jets with large missing energy

from the unobserved χ̃0
1.
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4.1. Mass Determination From Cross Section Measurements

Accurate cross section measurements combined with theoretical expectations will make it possible to obtain precise

determinations of the scalar top mass. This requires a high signal sensitivity. An Iterative Discriminant Analysis

(IDA) method [7] has been used to obtain a signal to background ratio of 10 or better. The expected size of the

signal is between one thousand and two thousand events in 500 fb−1 luminosity at a Linear Collider with
√

s = 500

GeV [6].

4.1.1. Use of beam polarization

A high degree of beam polarization is expected to be available at future e+e− colliders, and by measuring the

production cross section in both left- and right-handed configurations, mt̃1
and cos θt̃ can be determined, as shown in

Fig. 3 and discussed in Ref. [6, 10]. For 2×500 fb−1 a precision of mt̃1
= 220.7±0.57 GeV and cos θt̃ = 0.538±0.012

is obtained.

4.1.2. Threshold scan

Measuring the cross section for scalar top production close to threshold and fitting a theoretical curve allows the

mass to be deduced. The excitation curve near threshold has a β3 form. This is shown in Fig. 3 for six center-of-mass

energies, each equivalent to a luminosity of 50 fb−1. In this study the beam polarization P (e−)/P (e+) = +80%/−60%

was assumed (right-handed e−) as this provides the best signal to background ratio, leading to mt̃1
= 220.7±1.2 GeV.
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Figure 3: Left: mt̃1
and cos θt̃ determination from cross section measurements. The two bands correspond to different beam

polarizations. The ellipse indicates the accuracy that could be obtained. Right: fit of the scalar top mass from cross section

determination near threshold.

4.2. Mass Determination From Jet Measurements

The following two methods rely on measuring the kinematics of the observed jets, and thus deriving information

about the originating quarks. The precision of this measurement depends on the jet energy resolution which is

expected to be several GeV in this case as shown in Fig. 4.
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Figure 4: distributions of jet and parton energies.
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The IDA method provides an optimal signal to background ratio, but distorts the jet energy measurements (Fig. 5),

thus for this part of the analysis a simple cuts based selection is used. The cuts are also listed in the figure. About 900

signal events are selected (11% efficiency) and 390 background events remain (70% purity) for unpolarized beams.
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• 20 < number of energy flow objects < 90

• Visible energy < 0.8
√

s

• Longitudinal momentum < 0.5 visible energy

• Thrust < 0.95

• Cosine of thrust axis relative to beam direction < 0.95

• Both jet charm tags > 0.3

• At least one jet charm tag > 0.4

• Number of jets < 4

• Lowest energy jet > 35 GeV

• Highest energy jet < 140 GeV

Figure 5: Left: distortion of minimum energy spectrum after IDA selection. Right: list of sequential selection cuts.

4.2.1. End point method

The energy spectrum of a particle from a two-body decay is approximately a step function, whose end points

contain information about the masses of both, the particle that decayed, and the other particle produced in the

decay, which in this case is not observed. In the case of jets, this ideal situation is distorted by detector resolution,

hadronization, and jet finding, as shown in Fig. 6. Several event samples are generated to obtain calibration curves

and to determine the mass uncertainty.
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Figure 6: Minimum and maximum jet energy calibration for expected (parton) and simulated (jet) energies.

The precision for the minimum jet endpoint is 45.7 ± 1.0 GeV, for the maximum jet endpoint 130.2 ± 1.5 GeV,

and the resulting masses are mt̃1
= 219.3± 1.7 GeV and mχ̃

0

1

= 119.4 ± 1.6 GeV.

4.2.2. Minimum mass method

In the case when mχ̃
0

1

is known, the minimum allowed mass of the two jets in an event can be calculated [11].

Figure 7 shows an example of the distribution of this variable. Fitting this distribution with a prediction from

simulations allows a precise determination of mt̃1
, as shown in Fig. 8. This method gives a precision of mt̃1

=

220.5 ± 1.5 GeV.
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Figure 7: Examples of simulated maximum jet energy end points and the minimum mass of two jets. The points with error

bars are the simulated signal. The light gray (green) histogram is the scalar top signal and the dark gray (magenta) histogram

is the expected background.
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Figure 8: Left: minimum mass distribution for partons and jets. Right: χ2 fit for different scalar top mass simulations.

4.3. Discussion of mass determinations

The precision of the mass determination of the four methods are summarized in Table I. Slightly higher precision

is obtained from the polarization method, however, large theoretical uncertainties on the cross section calculations

are not included. Overall a high sensitivity on the mass determination can be achieved.

Table I: Comparison of precision for scalar top mass determination

Method ∆m (GeV) luminosity comment

Polarization 0.57 2 × 500 fb−1 no theory errors included

Threshold scan 1.2 300 fb−1 right-handed e− polarization

End point 1.7 500 fb−1

Minimum mass 1.5 500 fb−1 assumes mχ̃0

1

known

5. SMALL VISIBLE ENERGY STUDIES

In this section, the production of light stops at a 500 GeV Linear Collider is analyzed, using high luminosity

L = 500 fb−1 and polarization of both beams. The signature for stop pair production at an e+e− collider,

e+e− → t̃1
¯̃t1 → c χ̃0

1 c̄ χ̃0
1, (1)

is two charm jets and large missing energy. For small ∆m, the jets are relatively soft and separation from backgrounds

is very challenging. Backgrounds arising from various Standard Model processes can have cross sections that are

several orders of magnitude larger than the signal, so that even small jet energy variations effects can be important.

Thus, it is necessary to study also this process with a realistic detector simulation. Signal and background events
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Table II: Cross sections for the stop signal and Standard Model background processes for
√

s = 500 GeV and two polarization

combinations. The signal is given for the stop mixing angle cos θt̃ = 0.5. Negative/positive polarization values refer to

left-/right-handed polarization, respectively.

Process cross section [pb]

P (e−)/P (e+) 0/0 −80%/+60% +80%/−60%

t̃1
¯̃t1 mt̃1

= 120 GeV 0.115 0.153 0.187

mt̃1
= 140 GeV 0.093 0.124 0.151

mt̃1
= 180 GeV 0.049 0.065 0.079

mt̃1
= 220 GeV 0.015 0.021 0.026

W+W− 8.55 24.54 0.77

ZZ 0.49 1.02 0.44

Weν 6.14 10.57 1.82

eeZ 7.51 8.49 6.23

qq̄, q 6= t 13.14 25.35 14.85

tt̄ 0.55 1.13 0.50

2-photon, pt > 5 GeV 936 936 936

are generated with Pythia 6.129 [12], including a scalar top signal generation [13] previously used in Ref. [6]. The

detector simulation is based on the fast simulation Simdet [4], describing a typical ILC detector.

Table II lists the cross sections for the signal process and the relevant backgrounds. They have been computed

with code used in Ref. [14] and by Grace 2.0 [15], with cross checks to CompHep 4.4 [16]. A minimal transverse

momentum cut, pt > 5 GeV, is applied for the two-photon background, to avoid the infrared divergence.

In the first step of the event selection, the following preselection cuts are applied:

4 < Ncharged tracks < 50, pt > 5 GeV,

| cos θThrust| < 0.8, |plong,tot/ptot| < 0.9,

Evis < 0.75
√

s, minv < 200 GeV.

(2)

The cut on the number of charged tracks removes most leptonic background and part of the t̄t background. By

requiring a minimal transverse momentum pt, the two-photon background and back-to-back processes like qq̄ are

largely reduced. The signal is characterized by large missing energy and transverse momentum from the two neutrali-

nos, whereas for most backgrounds the missing momentum occurs from particles lost in the beam pipe. Therefore,

cuts on the thrust angle θThrust, the longitudinal momentum plong,tot, the visible energy Evis and the total invariant

mass minv are effective on all backgrounds. The various background are substantially reduced after these preselection

cuts, while about 70% of the signal is preserved, as shown in Table III.

After generating large event samples with the preselection cuts for the various backgrounds, as listed in Table III,

the following final event selection cuts are applied to further improve the signal-to-background ratio:

1. Number of jets Njets = 2. Jets are reconstructed with the Durham algorithm with the jet resolution parameter

ycut = 0.003 ×
√

s/Evis. The cut reduces substantially the number of W and quark-pair events.

2. Large missing energy, Evis < 0.4
√

s. This cut is effective against W+W−, ZZ and di-quark events. In addition,

a window for the invariant jet mass around the W-boson mass, 70 < mjet,inv < 90 GeV, is excluded to reduce

the large Weν background.

3. The number of qq̄ events are reduced by requiring a minimal acollinearity angle cosφaco > −0.9.

4. Cutting on the thrust angle, | cos θThrust < 0.7|, reduces W boson background.

5. A strong cut on the transverse momentum, pt > 12 GeV, completely removes the remaining two-photon events.

6. The largest remaining background is from e+e− → Weν. It resembles the signal closely in most distributions,

e.g. as a function of the visible energy, thrust or acollinearity. By increasing the invariant jet mass window from

cut 2 to (60 < mjet,inv < 90 GeV), the signal-to-background ratio is improved, but at the cost of a substantial

signal reduction. In addition, the signal selection is enhanced by c-quark tagging, which is implemented based

on the neural network analysis described in Ref. [17]. The neural network has been optimized to reduce the

Weν background while preserving the stop signal for small mass differences.
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Table III: Left: background event numbers and t̃1
¯̃t1 signal efficiencies (in %) for various mt̃1

and ∆m (in GeV) after preselection

and each of the final selection cuts. In the last column the expected event number are scaled to a luminosity of 500 fb−1.

The cuts are explained in the text. Right: signal efficiencies (in %) for t̃1
¯̃t1 production after final event selection for different

combinations of the stop mass mt̃1
and mass difference ∆m = mt̃1

− mχ̃0

1

.

after scaled to

Process total presel. cut 1 cut 2 cut 3 cut 4 cut 5 cut 6 500 fb−1

W+W− 210,000 2814 827 28 25 14 14 8 145

ZZ 30,000 2681 1987 170 154 108 108 35 257

Weν 210,000 53314 38616 4548 3787 1763 1743 345 5044

eeZ 210,000 51 24 20 11 6 3 2 36

qq̄, q 6= t 350,000 341 51 32 19 13 10 8 160

tt̄ 180,000 2163 72 40 32 26 26 25 38

2-photon 3.2 × 106 1499 1155 1140 144 101 0 0 < 164

mt̃1
= 140 :

∆m = 20 50,000 68.5 48.8 42.1 33.4 27.9 27.3 20.9 9720

∆m = 40 50,000 71.8 47.0 40.2 30.3 24.5 24.4 10.1 4700

∆m = 80 50,000 51.8 34.0 23.6 20.1 16.4 16.4 10.4 4840

mt̃1
= 180 :

∆m = 20 25,000 68.0 51.4 49.4 42.4 36.5 34.9 28.4 6960

∆m = 40 25,000 72.7 50.7 42.4 35.5 28.5 28.4 20.1 4925

∆m = 80 25,000 63.3 43.0 33.4 29.6 23.9 23.9 15.0 3675

mt̃1
= 220 :

∆m = 20 10,000 66.2 53.5 53.5 48.5 42.8 39.9 34.6 2600

∆m = 40 10,000 72.5 55.3 47.0 42.9 34.3 34.2 24.2 1815

∆m = 80 10,000 73.1 51.6 42.7 37.9 30.3 30.3 18.8 1410

∆m mt̃1
(GeV)

(GeV) 120 140 180 220

80 10 15 19

40 10 20 24

20 17 21 28 35

10 19 20 19 35

5 2.5 1.1 0.3 0.1

The resulting event numbers, scaled to a luminosity of 500 fb−1, and the signal efficiencies are listed in Table III.

After the final selection, the t̃1
¯̃t1 signal event numbers are of the same order as the remaining background, N ∼

O(104).

To explore the reach for very small mass differences ∆m = mt̃1
− mχ̃0

1

, signal event samples have been generated

also for ∆m = 10 GeV and 5 GeV, as shown in Fig. 9, together with results for larger mass differences. The signal

efficiency drastically drops for ∆m = 5 GeV as a result of the pt cut (cut 5). An optimization of the event selection

for very small ∆m will be addressed in future work.

Based on the above results from the experimental simulations, the discovery reach of a 500 GeV e+e− collider

can be estimated (Fig. 9). The signal efficiencies for the parameter points in Fig. 9 are interpolated to cover the

whole parameter region. The expected signal rates S are computed for each mass combination (mt̃1
, mχ̃0

1

). Together

with the number of background events B, this yields the significance S/
√

S + B. The gray (green) area in the figure

corresponds to the 5σ discovery region, S/
√

S + B > 5.

As evident from the figure, the ILC can find light stop quarks for mass differences down to ∆m ∼ O(5 GeV),

beyond the stop-neutralino co-annihilation region. The figure (right plot) shows the reach which can be achieved

with small total luminosities.

6. STOP PARAMETER DETERMINATION

The discovery of light stops would hint towards the possibility of electroweak baryogenesis and may allow the co-

annihilation mechanism to be effective. In order to confirm this idea, the relevant Supersymmetry parameters need

to be measured accurately. In this section, the experimental determination of the stop parameters will be discussed.

For definiteness, a specific MSSM parameter point is chosen:

m2

Ũ3

= −992 GeV2, At = −1050 GeV, M1 = 112.6 GeV, |µ| = 320 GeV,

mQ̃3
= 4200 GeV, tan β = 5, M2 = 225 GeV, φµ = 0.2.

(3)
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Figure 9: Left: discovery reach of a Linear Collider with 500 fb−1 luminosity at
√

s = 500 GeV for the reaction e+e− →
t̃1

¯̃t1 → cχ̃0
1 c̄ χ̃0

1. The results are given in the stop vs. neutralino mass plane. In the gray shaded region, a 5σ discovery

is possible. The region mχ̃0

1

> mt̃1
is inconsistent with a neutralino as Lightest Supersymmetric Particle (LSP), while for

mt̃1
> mW + mb + mχ̃0

1

the three-body decay t̃1 → W+b̄χ̃0
1 becomes accessible and dominant. In the light shaded corner to

the lower left, the decay of the top quark into a light stop and neutralino is open. The dark gray dots indicate the region

consistent with baryogenesis and dark matter. Also shown are the parameter region excluded by LEP searches [18] (white

area in the lower left corner) and the Tevatron light stop reach [19] (dotted lines) for various integrated luminosities. Right:

discovery reach for different luminosities.

The chosen parameters are compatible with the mechanism of electroweak baryogenesis, generating the baryon

asymmetry through the phase of µ. They correspond to a value for the dark matter relic abundance within the

WMAP bounds, ΩCDMh2 = 0.1122. The relic dark matter density has been computed with the code used in

Ref. [20]. In this scenario, the stop and lightest neutralino masses are mt̃1
= 122.5 GeV and mχ̃0

1

= 107.2 GeV, and

the stop mixing angle is cos θt̃ = 0.0105, i.e. the light stop is almost completely right-chiral. The mass difference

∆m = mt̃1
− mχ̃0

1

= 15.2 GeV lies within the sensitivity range of the ILC.

The measurements of t̃1
¯̃t1 production cross sections for different beam polarizations make it possible to extract

both the mass of the light stop and the stop mixing angle [10]. Here is it assumed that 250 fb−1 is spent each for

P (e−)/P (e+) = −80%/ + 60% and +80%/−60%, where negative/positive polarization degrees indicate left-/right-

handed polarization. In the cross section measurements the statistical and systematic errors are similar and of about

0.8% each. A complete discussion of the systematic errors is given in Ref. [21].

Each of the two cross section measurements for P (e−)/P (e+) = −80%/ + 60% and +80%/ − 60% corresponds to

a band in the parameter plane of the stop mass and mixing angle, as shown in Fig. 10. Combining the two cross

section measurements, the stop parameter are determined to

mt̃1
= 122.5 ± 1.0 GeV, cos θt̃ < 0.074 ⇒ sin θt̃ > 0.9972. (4)

The mass of the heavier stop t̃2 is too large to be measured directly, but it is assumed that a limit of mt̃2
> 1000

GeV can be set from collider searches. Combining the stop parameter measurements with corresponding data from

the neutralino and chargino sector [21] makes it possible to compute the neutralino dark matter abundance from

experimental results in the MSSM. All experimental errors are propagated and correlations are taken into account

by means of a χ2 analysis. The result of a scan over 100000 random points in the parameter space allowed by

the expected experimental uncertainties for the scenario eq. (3) is shown in Fig. 10 as a function of the scalar top

quark mass. The horizontal bands depict the relic density as measured by WMAP [1], which is at the 1σ level

0.104 < ΩCDMh2 < 0.121. Further scenarios are investigated and compared to the WMAP measurement (Fig. 11).

The collider measurements of the stop and chargino/neutralino parameters constrain the relic density to 0.100 <

ΩCDMh2 < 0.124 at the 1σ level, with an overall precision comparable to the direct WMAP determination.

9



121 122 123 124

0.08

0.1

0.12

0.14

121 122 123 124

0.08

0.1

0.12

0.14

PSfrag replaements 
 CD
Mh2 
 CDMh2

m~t1m~t1
Figure 10: Left: determination of light stop mass mt̃1

and stop mixing angle θt̃ from measurements of the cross section

σ(e+e− → t̃1
¯̃t1) for beam polarizations P (e−)/P (e+) = −80%/+60% and +80%/−60%. Statistical and systematic errors are

included. Right: computation of dark matter relic abundance ΩCDMh2 taking into account estimated experimental errors for

stop, chargino, neutralino sector measurements at future colliders. The black dots correspond to a scan over the 1σ (∆χ2 ≤ 1)

region which is allowed by the expected experimental errors, as a function of the measured stop mass. The red star indicates

the best-fit point. The horizontal shaded bands show the 1σ and 2σ constraints on the relic density measured by WMAP.
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mt̃1
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mχ̃0

1

[GeV] 102.1 104.1 107.2 114.0 118.1 123.1

cos θt̃ 0.0210 0.0150 0.0105 0.0038 0.0035 0.0005
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Figure 11: Left: dark matter scenarios in the Supersymmetric model. Point C corresponds to the scenario discussed before.

Right: dark matter relic abundance ΩCDMh2 for WMAP 1σ and 2σ error bands and expected Linear Collider precision for

benchmarks A-F.

7. CONCLUSIONS

Scalar top quark production and decay at a Linear Collider are studied with a realistic detector simulation with

focus on the c-tagging performance of a CCD vertex detector. The Simdet simulation largely agrees with the

previous SGV simulation in the kinematic distributions. In addition, the Simdet simulation includes a CCD vertex

detector (LCFI Collaboration). The tagging of c-quarks reduces the background by about a factor 3 in the cχ̃0
1c̄χ̃

0
1

channel. Thus, scalar top processes can serve well as a benchmark reaction for the vertex detector performance.
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Dedicated simulations with SPS-5 parameters are performed. The expected background depends significantly on

the detector design, mostly on the radius of the inner layer. Future studies of different detector designs will include

simulations with small scalar top and neutralino mass differences.

For the scalar top mass determination four methods are compared. The polarization method gives the highest

precision. The other methods are also important as they contribute to the determination of the properties of the

scalar top quark. For example, the scalar character of the stops can be established from the threshold cross section

scan.

A new study for small mass difference, thus small visible energy, shows that a Linear Collider has a large potential

to study the scalar top production and decay, in particular in this experimentally very challenging scenario.

From detailed simulations together with estimated errors for measurements in the neutralino/chargino sector, the

expected cosmological dark matter relic density can be computed. The precision at a Linear Collider will be similar

to the current precision of WMAP. The uncertainty in the dark matter prediction from a Linear Collider is dominated

by the precision of the scalar top quark mass measurement.
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